Kinetic Theory

ثبت نشده
چکیده

Kinetic theory is the simplest approach that describes the dynamics of enormous numbers of particles. Often it is the only one where we can make progress in actually calculating numbers such as viscosity or electrical conductivity! It describes nearly ideal gases: usually the interactions are only taken into account in the collisions (to be defined below) that lead to the approach to equilibrium, and not in the properties of that equilibrium (such as the equation of state, compressibility etc.). In some cases (e.g. Fermi liquid theory) it is useful to take other effects of the interactions into account in a mean field sort of way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

Simulation of nanodroplet impact on a solid surface

A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...

متن کامل

Simulation of nanodroplet impact on a solid surface

A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...

متن کامل

A density functional theory study of the region selectivity of the Diels –Aldercyclo addition of 2 methyl- substituted diene with selected dienophiles

In the present work, the regioselectivity for a series of Diels–Alder reactions (4 reactions) has beenstudied using hardness, electrophilicity and polarizability of products.Furthermore,thermodynamicand kinetic calculations have been done. In all results predicted pararegioisomer is more favorableregioisomerinthese investigated reactions.All calculations have been done at the DFT-B3LYP/6-31G(d)...

متن کامل

Kinetic and thermodynamic study of substituent effect on the Claisen rearrangement of para-substituted SI aryl ether: a Hammett study via DFT

In order to find the susceptibility of the Claisen rearrangement and next proton shift reaction of ally) aryl etherto the substiment effects in pan position, the kinetic and the:rmodynamie parameters are calculated at The33 LTP level using 6-3110. b asis set. The calculated activation energies for the rearrangements and protonshift reactions are around 3133 kcaUmol and 52.16 kcal/mol, nap.. liv...

متن کامل

Platinum-oxygen Bond Formation: Kinetic and Mechanistic Studies

Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004